Estudio: Las partículas que contagian la COVID-19 pueden viajar hasta 60 metros
La forma de contagio del virus SARS-CoV-2 es motivo de estudio desde que se conoció su versión original a fines de 2019. Desde entonces se realizaron varias investigaciones y, mientras en el inicio de la pandemia por COVID-19 se prestaba atención a la limpieza de las superficies para evitar la propagación, luego la ciencia fue comprendiendo que, en verdad, el riesgo mayor de contagio es el de las gotitas de la respiración, la tos o el estornudo, que viajan por el aire.
Una nueva investigación planteó preguntas sobre la distancia en que viajan esas gotas y en qué momento de ese viaje se vuelven inofensivas y descubrió que podrían viajar hasta 60 metros antes de que el virus que transportan quede desactivado. Esto equivaldría aproximadamente a media cuadra.
Los experimentos en este sentido son antiguos, ya que los primeros datan de la década de 1930. Desde ese momento se sabe que al estornudar o toser las gotas pueden ser pesadas o livianas. Las primeras caen el piso y es poco probable que contagien a otra persona, en cambio las más pequeñas y livianas pueden seguir dos caminos: o se evaporan rápidamente y se vuelven inofensivas o viajan más lejos y son capaces de producir un contagio. La sequedad del ambiente no favorece la propagación de virus como los coronavirus porque seca esa humedad de las gotas exhaladas.
Una investigación reciente de expertos del Laboratorio Nacional del Noroeste del Pacífico del Departamento de Energía de EEUU (PNNL, por sus siglas en inglés) detectó que en esta última de las posibilidades las partículas respiratorias microscópicas pueden permanecer húmedas y en el aire durante períodos de tiempo más prolongados y viajar más lejos de lo que se pensaba anteriormente.
«Hay informes de personas que se infectan con un coronavirus a favor del viento de una persona infectada o en una habitación varios minutos después de que una persona infectada haya salido de esa habitación», dijo Leonard Pease, uno de los autores del estudio. Los hallazgos fueron publicados en la edición de febrero de la revista International Communications in Heat and Mass Transfer.
«La idea de que los viriones envueltos pueden permanecer bien hidratados y, por lo tanto, completamente infecciosos a distancias considerables es consistente con las observaciones del mundo real. Quizás las gotitas respiratorias infecciosas persisten más de lo que nos hemos dado cuenta», agregó Pease.
Los científicos ya han determinado hace mucho tiempo que los virus se expanden más lejos a través de las pequeñas gotas respiratorias que exhalan de los pulmones las personas infectadas y así se transmiten gran cantidad de enfermedades, no solamente la COVID-19. El equipo de PNNL observó detenidamente la mucosidad que cubre las gotitas respiratorias.
Si bien el conocimiento popular indica que las gotitas en aerosol muy pequeñas, de solo unas pocas micras, como las que se producen en los pulmones se vuelven inofensivas porque se secan en el aire casi instantáneamente, el equipo de PNNL descubrió que la mucosidad cambia la ecuación.
Los científicos detectaron que la capa de moco que rodea las gotitas respiratorias es posible que reduzca las posibilidades de evaporación, ya que aumenta el tiempo que el virus permanece activo dentro de esas gotas que lo mantiene húmedo. Los virus envueltos como el SARS-CoV-2 tienen una capa de grasa que debe mantenerse húmeda para que el virus sea infeccioso, la evaporación más lenta permite que las partículas virales sean infecciosas por más tiempo.
Las estimaciones del grupo científico indicaron que las gotas que viajan en moco podrían permanecer húmedas hasta 30 minutos y viajar hasta unos 60 metros. «Si bien se han propuesto muchos factores como variables en la forma en que se propaga la COVID, la mucosidad se pasa por alto en gran medida», agregó el experto. Además de Pease, el paper fue firmado por Nora Wang Esram, Gourihar Kulkarni, Julia Flaherty y Carolyn Burns.
Entonces, si se pudiera como ejemplo qué ocurre con los contagios en un edificio de oficinas. Para responder esta pregunta. Los químicos Carolyn Burns y Alex Vlachokostas crearon gotas artificiales similares a las respiratorias para estudiar cómo se movían las partículas de una habitación a otra.
Burns se decidió por dos sustancias para transportar partículas similares a virus artificiales. Uno era moco bovino; el otro era alginato de sodio, un compuesto derivado de algas pardas. El compuesto se usa comúnmente como agente espesante en alimentos como helados y queso.
El equipo que condujo Burns usó un aerógrafo para dispersar gotas en una habitación de un edificio de laboratorio de varias habitaciones y así simular la tos de una persona que libera partículas durante aproximadamente un minuto en una habitación. Un equipo dirigido por Vlachokostas y Burns midió los niveles de gotas en dos habitaciones contiguas con ventilación controlada del edificio.
Los científicos descubrieron también que tanto los niveles bajos como los altos de filtración eran efectivos para reducir los niveles de gotitas respiratorias en todas las habitaciones. La filtración redujo rápidamente los niveles de gotas en las habitaciones contiguas, en aproximadamente 3 horas, a un tercio del nivel o menos sin filtración.
Los científicos detectaron, además, que aumentar la ventilación bajaba rápidamente los niveles de partículas en la sala de origen de las pequeñas gotas. Pero los niveles de partículas en las otras habitaciones conectadas aumentaron de inmediato; los niveles aumentaron de 20 a 45 minutos más tarde con cambios de aire vigorosos. Finalmente, después del pico inicial, los niveles de gotas en todas las habitaciones disminuyeron gradualmente después de 3 horas con filtración y después de 5 horas sin ella.
De esta forma, la conclusión es que aumentar el intercambio de aire en espacios concurridos puede ser beneficioso en situaciones como grandes conferencias o asambleas escolares, pero en condiciones normales de trabajo y de las aulas de los colegios puede aumentar las tasas de transmisión en todas las habitaciones de un edificio. Es decir,«Si está en una habitación 'aguas abajo' y no es la fuente del virus, probablemente no esté mejor con más ventilación», dijo Pease.
Una nueva investigación planteó preguntas sobre la distancia en que viajan esas gotas y en qué momento de ese viaje se vuelven inofensivas y descubrió que podrían viajar hasta 60 metros antes de que el virus que transportan quede desactivado. Esto equivaldría aproximadamente a media cuadra.
Los experimentos en este sentido son antiguos, ya que los primeros datan de la década de 1930. Desde ese momento se sabe que al estornudar o toser las gotas pueden ser pesadas o livianas. Las primeras caen el piso y es poco probable que contagien a otra persona, en cambio las más pequeñas y livianas pueden seguir dos caminos: o se evaporan rápidamente y se vuelven inofensivas o viajan más lejos y son capaces de producir un contagio. La sequedad del ambiente no favorece la propagación de virus como los coronavirus porque seca esa humedad de las gotas exhaladas.
Una investigación reciente de expertos del Laboratorio Nacional del Noroeste del Pacífico del Departamento de Energía de EEUU (PNNL, por sus siglas en inglés) detectó que en esta última de las posibilidades las partículas respiratorias microscópicas pueden permanecer húmedas y en el aire durante períodos de tiempo más prolongados y viajar más lejos de lo que se pensaba anteriormente.
«Hay informes de personas que se infectan con un coronavirus a favor del viento de una persona infectada o en una habitación varios minutos después de que una persona infectada haya salido de esa habitación», dijo Leonard Pease, uno de los autores del estudio. Los hallazgos fueron publicados en la edición de febrero de la revista International Communications in Heat and Mass Transfer.
«La idea de que los viriones envueltos pueden permanecer bien hidratados y, por lo tanto, completamente infecciosos a distancias considerables es consistente con las observaciones del mundo real. Quizás las gotitas respiratorias infecciosas persisten más de lo que nos hemos dado cuenta», agregó Pease.
Los científicos ya han determinado hace mucho tiempo que los virus se expanden más lejos a través de las pequeñas gotas respiratorias que exhalan de los pulmones las personas infectadas y así se transmiten gran cantidad de enfermedades, no solamente la COVID-19. El equipo de PNNL observó detenidamente la mucosidad que cubre las gotitas respiratorias.
Si bien el conocimiento popular indica que las gotitas en aerosol muy pequeñas, de solo unas pocas micras, como las que se producen en los pulmones se vuelven inofensivas porque se secan en el aire casi instantáneamente, el equipo de PNNL descubrió que la mucosidad cambia la ecuación.
Los científicos detectaron que la capa de moco que rodea las gotitas respiratorias es posible que reduzca las posibilidades de evaporación, ya que aumenta el tiempo que el virus permanece activo dentro de esas gotas que lo mantiene húmedo. Los virus envueltos como el SARS-CoV-2 tienen una capa de grasa que debe mantenerse húmeda para que el virus sea infeccioso, la evaporación más lenta permite que las partículas virales sean infecciosas por más tiempo.
Las estimaciones del grupo científico indicaron que las gotas que viajan en moco podrían permanecer húmedas hasta 30 minutos y viajar hasta unos 60 metros. «Si bien se han propuesto muchos factores como variables en la forma en que se propaga la COVID, la mucosidad se pasa por alto en gran medida», agregó el experto. Además de Pease, el paper fue firmado por Nora Wang Esram, Gourihar Kulkarni, Julia Flaherty y Carolyn Burns.
Entonces, si se pudiera como ejemplo qué ocurre con los contagios en un edificio de oficinas. Para responder esta pregunta. Los químicos Carolyn Burns y Alex Vlachokostas crearon gotas artificiales similares a las respiratorias para estudiar cómo se movían las partículas de una habitación a otra.
Burns se decidió por dos sustancias para transportar partículas similares a virus artificiales. Uno era moco bovino; el otro era alginato de sodio, un compuesto derivado de algas pardas. El compuesto se usa comúnmente como agente espesante en alimentos como helados y queso.
El equipo que condujo Burns usó un aerógrafo para dispersar gotas en una habitación de un edificio de laboratorio de varias habitaciones y así simular la tos de una persona que libera partículas durante aproximadamente un minuto en una habitación. Un equipo dirigido por Vlachokostas y Burns midió los niveles de gotas en dos habitaciones contiguas con ventilación controlada del edificio.
Los científicos descubrieron también que tanto los niveles bajos como los altos de filtración eran efectivos para reducir los niveles de gotitas respiratorias en todas las habitaciones. La filtración redujo rápidamente los niveles de gotas en las habitaciones contiguas, en aproximadamente 3 horas, a un tercio del nivel o menos sin filtración.
Los científicos detectaron, además, que aumentar la ventilación bajaba rápidamente los niveles de partículas en la sala de origen de las pequeñas gotas. Pero los niveles de partículas en las otras habitaciones conectadas aumentaron de inmediato; los niveles aumentaron de 20 a 45 minutos más tarde con cambios de aire vigorosos. Finalmente, después del pico inicial, los niveles de gotas en todas las habitaciones disminuyeron gradualmente después de 3 horas con filtración y después de 5 horas sin ella.
De esta forma, la conclusión es que aumentar el intercambio de aire en espacios concurridos puede ser beneficioso en situaciones como grandes conferencias o asambleas escolares, pero en condiciones normales de trabajo y de las aulas de los colegios puede aumentar las tasas de transmisión en todas las habitaciones de un edificio. Es decir,«Si está en una habitación 'aguas abajo' y no es la fuente del virus, probablemente no esté mejor con más ventilación», dijo Pease.